太陽電池電極と光触媒用酸化チタンの開発

1) 酸化チタン薄膜による Si 太陽電池の PID 抑制

ーノ瀬 弘道¹、釘島 裕洋¹、原 浩二郎²
¹ 佐賀県窯業技術センター
² 独立行政法人産業技術総合研究所

Si太陽電池のPIDの原因と考えられるフロントガラスからSi表面へのNa化学種の拡散を抑制するため、 ペルオキソチタン液、アナタースゾル、SiO₂ ゾル含有ペルオキソチタン液を原料とした薄膜をフロントガ ラス内面上に200℃以下で形成した。PID 促進試験を行った結果、薄膜を施した太陽電池モジュールで はNa化学種の拡散量が減少し、著しいPID抑制効果が認められた。とくにペルオキソチタン液を原料と して200℃で熱処理した膜厚100、200nmの薄膜の場合がより高い抑制効果を示した。

Study of titanium dioxide for solar cell and photocatalyst

1) Si photovoltaic modules based on titanium dioxide-coated cover glass against potential-induced degradation

Hiromichi Ichinose¹, Masahiro Kugishima¹, Kohjiro Hara² ¹ Saga Ceramics Research Laboratory ² Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology

Potential-induced degradation (PID) of crystalline Si photovoltaic module was estimated by applying -1000V from cover glass to Si cell at 85°C. Concentration of Na-species on Si cell surface rather increased after PID test, and solar energy-to-electricity conversion efficiency decreased remarkably. When titanium dioxide thin films were coated onto the inside of the cover glass, prepared at 200°C using peroxotitanium complex, anatase sol and a mixture of peroxotitanium complex and SiO₂ sol, Na-species diffusion from cover glass to Si cell surface and PID were significantly prevented. Especially thicker film more than 100nm using prexotitanium complex was sufficient to completely suppress PID.

1. はじめに

太陽電池は光エネルギーを直接電気に変換することが できるため、クリーンで再生可能なエネルギー源のひと つとして世界で普及が進んでいる。多結晶 Si 型モジュー ルを組み合わせた太陽電池パネルが最も一般的に利用 され、さらに多数のパネルを結合したメガソーラー発電は 大電力を得る手段として非常に期待されている。この太陽 電池による電力供給をさらに推進するためには、モジュ ール変換効率(η)の改善、システム全体の耐久性向上、 生産コストの低減が大きな課題となっている。

最近、Si 太陽電池モジュールを直列に多数結合し高電 圧を発生させるシステムで potential-induced degradation (PID)、つまりシステムの変換効率が著しく低下するという 問題が報告された^{1,2)}。この現象は、高温、高湿度下で高 電圧がモジュールに印加されると、フロントガラス中の Na⁺ 等のイオンが Si セル上に拡散し発電を阻害するためであ ると言われている³³。

この Na イオン化学種の Si セル上への拡散を長期間防 ぐ太陽電池を得るには、フロントガラス表面に緻密な透明 セラミックス膜を拡散防止膜として形成することが有効で あると考えられる。安価に透明セラミックス薄膜を形成する には塗布液を用いた大気中の熱処理が望ましいが、フロ ントガラスである強化ガラスの耐熱温度は約 200℃であり、 一般にその温度では緻密な薄膜形成が困難であるという 問題がある。

ペルオキソチタン液は比較的安価であり 200℃以下で 緻密で透明な非晶質酸化チタン薄膜を形成することがで きる ⁴。本研究では、ペルオキソチタン液あるいはアナタ ースゾルを主原料として 200℃以下で透明薄膜をフロント ガラス表面に形成することによって、高電圧バイアス下で 起きるNa化学種の拡散を抑制し、PIDを防止することを試 みた⁵。

2. 実験方法

2.1 薄膜の作成

標準太陽電池パネル用フロントガラス(Asahi Glass Co.,Ltd., soda lime glass, 180x180x3.2mm)のSi セル側の エンボス面上に、一定量の 0.1mol/L のペルオキソチタン 液 ⁴及びアナタースゾル液 ⁴をそれぞれ塗布乾燥し、100、 150、200°Cで1時間熱処理した。塗布量は Ti として 12、 23、46 µ g/cm² であり、それぞれ最終的な膜厚は約 50、 100、200nm である。その他の塗布材料として、SiO₂(日産 化学工業社製コロイダルシリカスノーテックス N)50mol%含 有ペルオキソチタン液も用いた。塗布量は蛍光X線分析、 熱処理後の結晶相は粉末X線回折(XRD)によって測定し た。

2.2 太陽電池モジュールの作成

多結晶 p-Si 太陽電池セル (Q.Cells Co., 156x156x 0.18mm)を2枚の EVA フィルム (fast-cure type)で挟み、 上 部 にフロントガラス、下 部 にバックシート (PVF/PET/PVF)を配し、ラミネーター (LM-50x50、NPC Inc.)を用いて真空下、135℃、15 分間処理してラミネート した。図 1 に酸化チタン薄膜を施したモジュールの概念 図を示す。

図1 酸化チタン薄膜を導入した Si 太陽電池モジュールの概念図.

2.3 PID テスト

フロントガラスを覆うように Al 板(0.3~0.5mm)を電極と

して密着させ、セルに向かって-1,000Vのバイアスを2時 間印加した。湿度はとくに制御しなかったが85℃で約 RH2%であった。PIDテストの前後の変換効率(η)はソー ラーシミュレーター(Yamashita Denso Co.、YSS-150A、 1000W Xe lamp、AM filter)を光源としてI-V曲線を測定す ることによって算出した。

3.結果と考察

3.1 ペルオキソチタン薄膜の結晶化

図2に熱処理したペルオキソチタン薄膜のXRDパター ンを示す。既報 ⁴と同じように 100℃と 200℃では、非晶質 で層状であるペルオキソチタン水和物や酸化チタンの層 間隔に由来する底面反射が 2 θ =10°付近に認められた。 300℃以上ではアナタースに結晶化した。アナタース薄 膜は光触媒活性を示し樹脂製の封し材(EVA)を劣化させ る可能性があるため、PID テストに供する膜の熱処理温度 は 200℃以下とした。

図2ペルオキソチタン薄膜の熱処理温度毎のX線回折パターン.

3.2 PID

HoffmannとKoehl⁶はフロントガラス表面にAIフォイルを 密着させて高電圧を印加すると PID 現象が非常に加速さ れることを見出している。本実験もAI板を用いた同じ試験 で短時間の耐久試験を行った。図3に標準のSi型太陽電 池モジュールの PID テスト(-1000V、85℃、2h)前後の I-V 曲線を示す。ηの値は試験前 15.9%であったが、試験後 は 0.6%と大きく低下した。逆に電圧バイアスを+1000V と すると PID 現象はまったく起こらなかった。PID 現象前後 の Si 表面の SIMS 分析によれば、PID 現象後には Na 化 学種(Na⁺、Na₂OH⁺、Na₃CO₃⁺)がかなり増大していることが 判明した。また、Natの代わりに Ktを含むガラスを用いた 場合では PID 現象は起きなかった。これらの結果から、 PID の原因はフロントガラスからの Na 化学種の拡散であ ることが示唆された。

3.3 酸化チタン薄膜による PID 現象抑制効果

太陽電池用のフロントガラスは表面強化されており、常 用温度の上限は約200℃である。そのため、薄膜の熱処 理温度は200℃以下であることが要求される。そこ200℃ 以下で酸化チタン薄膜を形成することができるペルオキ ソチタン液及びそのペルオキソチタン液を水熱して得ら れるアナタースゾルを主原料とした薄膜を200℃以下でフ ロントガラス内面に形成し、PID現象の原因であると考えら れるフロントガラスからの Na 化学種拡散の遮断を試み た。 図4にアナタースゾルを用いてフロントガラスエンボス 面に膜厚200nmの薄膜を形成した場合の PID テストの結 果を示す。薄膜がない場合と比較すると著しい PID 抑制 効果が認められた。また、薄膜の熱処理温度が100℃より も 200℃の方がより高い効果が認められ、変換効率 η の 維持率は95.5%であった。

図5にペルオキソチタン液を原料とした場合のPIDテストの結果を示す。膜厚200nmの場合、PIDテスト後のηの維持率は96.8%となり、アナタースゾルの場合より高いPID抑制効果が認められた。膜厚100nmでもηの維持率は95.5~97.5%と高い値であった。しかし、膜厚が50nmの場合は、51%~68.1%と低下した。PIDテスト前後のモジュールのエレクトロルミネッセンス(EL)を測定すると、膜厚100nm以上でELの変化はほとんどなくなった。つまり、100nm以上の膜厚ではフロントガラス中のNa化学種のSi表面上への拡散が著しく抑制されていることが示唆された。

酸化チタン薄膜を塗布するとηが 1~3%程度低下す る。その理由は、酸化チタン膜の高い屈折率に起因する 入射光の反射と吸収による光の透過率低下の影響がある ためである。そこでペルオキソチタン液に 50mol%SiO₂を 混合した液で薄膜形成した場合の PID テストを行った。そ の結果を図 6 に示す。ηの維持率は 87~91%で酸化チ タンのみの膜より低下した。これは、SiO₂ の粒径が約 20nm であるためペルオキソチタン膜の場合より薄膜の緻 密さが低下し、Na 化学種の拡散防止能力が低下したため であると考えられる。

拡散防止膜あり (原料:アナタースゾル)

これまで、PID 現象抑制はSiO₂やSiNxのようなシリコン ベースの薄膜によっても試みられている^{7,8)}。現在の段階 ではそれらの薄膜材料と本研究で使用したものとの PID 抑制効果の優劣は検討しておらず、今後のさらなる詳細 な研究が必要である。

4. まとめ

太陽電池の PID の原因のひとつとして、フロントガラスか らの Na 化学種の拡散であることが示唆された。また、経 済的に安価な改善方法として 200℃で緻密となるペルオ キソチタン液やアナタースゾルを原料とした酸化チタン薄 膜の形成が有効であることを示すことができた。とくにペ ルオキソチタン液のみで形成した膜厚 100nm 以上の酸化 チタン薄膜の PID 抑制効果は顕著であった。太陽光発電 における PID は深刻な問題であり、今後はさらにどのよう な薄膜がより効果的であるのかを詳細に検証していく必 要がある。

(本研究の一部の内容は The Royal Society of Chemistry Advances 誌上で既に発表されたものである⁵⁰。また、太陽 電池モジュールの作成、PID 試験、SIMS 分析、EL 観察は 産総研九州センターにおいて行われた。)

参考文献

- S. Pingel, O. Frank, M. Winkler, S. Daryan, T. Geipel, H. Hoehne and J. Berghold, Proc. the 35th IEEE Photovoltaic Specialists Conference, Honolulu, p.2817–2822 (2010).
- H.-C.Liu, C.-T.Huang, W.-K.Lee and M.-H.Lin, Energy Power Eng., 5, 455–458 (2013).
- J. Bauer, V. Naumann, S. Gro β er, C. Hagendorf, M. Schütze and O. Breitenstein, Phys. Status Solidi RRL, 6, 331–333 (2012).
- H. Ichinose, M. Terasaki and H. Katsuki, J. Ceram. Soc. Jpn., 104, 715–718 (1996).
- K. Hara, H. Ichinose, T. N. Murakami and A. Masuda, The Royal Society of Chemistry Advances, 4, 44291–44295 (2014).
- Hoffmann and Koehl, Prog. Photovoltaics, 22, 173–179 (2014).

- J. Zita, J. Maixner and J. Krysa, J. Photochem. Photobiol., A, 216, 194–200 (2010).
- E. Aubry, J. Lambert, V. Demange and A. Billard, Surf. Coat. Tecnol., 206, 4999–5005 (2012).