1) バイオガス用燃料電池材料の成形技術の開発

古田祥知子

(共同研究者 九州大学大学院工学研究院 白鳥祐介、高田将)

押出成形で作製したNiO-YSZアノードシートに活性層及びYSZ電解質層をスクリーン印刷で積層し、 緻密な電解質膜を有するハーフセルを作製した。成形後の生シートに小型彫刻機でガス流路を形成 させたハーフセルを試作し、温度分布の評価を行ったところ、温度分布が緩和される傾向が確認され た。セルの電流電圧特性では、流路付セルの方が高い開回路電圧が得られたが、発電時の電圧低 下は大きくなった。

1. はじめに

化石資源の枯渇や地球温暖化問題の観点から、再生可 能なバイオマス資源のエネルギー利用が注目されている。 佐賀県では、バイオマスを利用したクリーンエネルギーを 推進しており、その利用手段のひとつとしてバイオガス利 用燃料電池への活用は有望である。バイオガスを直接燃 料電池の燃料とするシステムは大手メーカーが取り組ん でいない分野であるため、先行すれば中小企業でも優位 性が持てる可能性が高い。

バイオガスを直接燃料とするには、図1に示すようにア ノード側において燃料ガスが水素へ改質される必要があ り、そのためには作動温度の低い固体高分子型燃料電池 (PEFC)ではなく、800℃付近で作動させる固体酸化物型 燃料電池(SOFC)である必要がある。

図1 SOFC にバイオガスを供給したときの発電の模式図.

当センターでは H22 年度より、県内企業を中心とした新 製品開発に貢献することを目的とし、九州大学と共同で、 バイオガスを直接燃料に用いることが可能な新しい SOFC の開発を行っている。

水素燃料と異なり、バイオガスを燃料とした場合、燃料 ガスの内部改質による吸熱反応が起こるためセルに大き な温度勾配が生じ、熱応力によるセルの変形・破壊が起 こってしまうという問題がある。

本研究では、燃料極表面に燃料ガスの流れを制御する ための構造を構築することで、燃料ガスの改質に伴う吸 熱反応を分散させることが可能な新しいセル構造の開発 を目指す。昨年度まで、押出成形とスクリーン印刷により 平板型セルの製造プロセスを確立し、燃料電池作動温度 におけるバイオガス供給時のセル表面の温度分布の評 価を行った。本年度は、セルの電気化学的特性を評価す るとともに、アノード側にガス流路を形成したセルを試作 し、温度勾配の緩和を試みた。

2. 実験方法

2.1 ハーフセルの作製

アノード材料には第一稀元素製イットリア安定化ジルコ ニア(8mol%Y₂O₃-92mol%ZrO₂,以下YSZと略記)及び、 関東化学製特級酸化ニッケル(NiO)を、重量比 56:44 で 配合したものを、電解質材料には同じく第一稀元素製 YSZを用いた。

昨年度と同様、宮崎鉄工(株)の協力を受け、押出成形 により、厚さ1.2mm、幅10mmのアノードシートを成形した。 ここで、配合比は原料粉末に対して増孔材(綜研化学製 アクリルパウダーMX-150) 15mass%、成形助剤(ユケン工 業製バインダーYB-154S) 12mass%、水 20.5mass%とした。 成形したシートは長さ350mmでカットし、反りが生じないよ う石膏ボードで上下から挟み室温で乾燥させた。

次に、65×65mm にカットしたグリーンシートに、昨年度 と同様のプロセス¹⁾で活性層(NiO-YSZ、プリンティングオ イル:互応化学 OS-4530)と電解質層(YSZ、プリンティン グオイル:互応化学OS-4530)をスクリーン印刷し、1050℃ 及び1400℃で仮焼及び本焼成を行った(図2)。

アノード側への流路形成は、生シートの段階で Roland 製の小型彫刻機 EGX350 を用いて行った。燃料ガス入口 側から出口側まで流路を貫通させてしまうと、多孔質アノ ード内に拡散しないまま通り抜けてしまう燃料ガスが多く なると考え、図 3 の例に示すように、出口側には貫通しな い行き止まりの流路設計を行った。

図2 作製したハーフセルシート. (1)グリーンシート、(2)仮焼体、(3)焼成体.

図3 加工した流路の例.

2.2 物性評価

試作したハーフセルは、FE-SEM(日本電子製、 JSM-6700FSS)で断面及び電解質表面を観察するととも に、水銀ポロシメータ(島津製作所/Micromeritics 社製、 オートポアIII9420)でアノードシート部分の気孔特性を評 価した。

2.3 セル温度分布評価

図4に温度分布評価装置の模式図を示す。燃料ガスは セルホルダの右側の管から供給され、セル右側の下部か ら多孔質セル内に拡散し、セル左下から管を通って排出 される。800℃において上部から熱画像カメラ(NEC-Avio 製、TVS-8500)でセル温度分布を観察できる構造となっ ている。

試作ハーフセルを 50×50 mm角に調整し、図5 に示すように電解質面を上にしてセルホルダに装着した。セルホルダを炉内にセットして、SOFC 作動温度である 800℃まで昇温した。800℃に到達後、N₂ガス 150cm³/min を流して約 15 分間パージした。次に 800℃でキープしたままH₂ガス 20cm³/min、N₂ガス 150cm³/min を一晩供給することで、アノード中の NiO を Ni に還元処理した。

図4 温度分布評価装置.

図5 セルホルダへの平板セルの装着.

測定は、まず H_2 ガス 50cm³/min、 N_2 ガス 150cm³/min 供 給時のセル表面の温度分布を観察した。バイオガス流通 時の測定は、燃料バイオガスに空気を添加することで改 質反応による吸熱が抑制できるという九州大学の報告²⁰を 参考にした。まずガスを CH_4 -60cm³/min、 CO_2 -40cm³/min、 空気-150cm³/min に切り替え、Air/Biogas 比が 1.5 の時の セル表面温度分布を測定し、次に Air/Biogas 比を下げな がら、同様に温度分布を測定した。各種流路を形成した セルについても同様の測定を行った。

2.4 SOFC 単セルの作製

カソードは活性層と集電体の2層構造とし、カソード活 性層材料には、NexTech 社製(La_{0.8}Sr_{0.2})_{0.98}MnO₃(以下、 LSM と略記)と YSZ を重量比 50:50 で配合したものを、カ ソード集電体材料には NexTech 社製 LSM を用いた。2.1 で作製したハーフセルの電解質面にカソード活性層と集 電体の層をスクリーン印刷し、1200℃で焼成してアノード 支持型 SOFC 単セルとした(図6)。

図 6 カソード積層後の SOFC 単セル.

2.5 電流電圧特性評価

白金メッシュに白金線を接合した集電体をカソード側に、 ニッケルメッシュに白金線を接合した集電体をアノード側 に用いた。集電体及び単セルをセルホルダに装着し、東 陽テクニカ社製の燃料電池評価システム AutoSOFC によ り、角型 SOFC の発電試験を行った。測定は流路付セル 及び流路無しセルを用いて行い、温度分布の評価と同様、 バイオガスへの空気添加量を変化させた時の電流電圧 特性を比較した。

3. 結果と考察

3.1 ハーフセルの物性評価

図7に、作製したハーフセルの断面及び電解質表面の FE-SEM 写真を示す。アノード支持体の層は増孔材の効 果によって球形の気孔が支持体全体に分散した多孔質 構造になっており、その上に活性層と電解質層の緻密な 層が積層していることが観察された。支持体と活性層、電 解質層の間にはクラックなどは見られず、密着状態は良 好であった。電解質表面の写真では、ピンホールなどの 欠陥がほとんどない緻密な電解質が形成されていること が確認された。気孔分布は非常にシャープで、中央気孔 直径が約1.0μmであった。気孔率は約32%で、市販の標 準的な NiO-YSZ ハーフセルと同等の物性が得られた。

図7 ハーフセル断面及び電解質面の FE-SEM 写真.

3.2 セル温度分布評価

H₂ガス50cm³/min、N₂ガス150cm³/min 供給時の平板セ ル温度分布を図8に示す。右側が燃料ガス供給側、左側 が排出側である。約800℃でセル表面温度が均一である

ことがわかる。

次に、供給ガスを CH₄-60cm³/min、CO₂-40cm³/min、の 模擬バイオガスに切り替え、Air/Biogas 比を変化させたと きのセル温度分布を図9に示す。Air/Biogas = 1.5 の場合、 温度分布は比較的均一であり、熱機械的に安定な運転が 可能である。Air/Biogas 比を低下させると、改質反応に伴 う吸熱の寄与が大きくなり、Air/Biogas = 0.7 ではバイオガ ス入口側の局所温度低下が非常に大きくなっていること が確認できる。

図8 800°C運転時の平板セルの表面温度分布. 供給ガス: N₂:150ml/min、H₂:50ml/min.

 図9 800°C運転時の平板セルにおいて、供給ガスを CH₄-60cm³/min、 CO₂-40cm³/minの模擬バイオガスに切り替え、Air/Biogas 比を変化 させたときのセル温度分布.

図3の右側に示したT字型流路を形成したセルの温度 分布を図10~11に示す。平板セルと同様、水素供給時 には温度勾配がなく、約800℃で表面温度が均一である。 供給ガスを模擬バイオガスに切り替えると、改質反応によ る吸熱が起こり温度低下が生じるが、流路無しのセルと比 較して、燃料入り口側に集中していた温度低下が流路を 通じて出口側に分散し、Air/Biogas = 0.7の場合でも入口 側での局所的な温度低下は見られなかった。また、図12 は、数種類の流路を形成させたセルの温度分布の例を示 したものであるが、温度分布が様々に変化しているのが 観察される。このように、流路の形成は吸熱による温度勾 配の緩和に有効であることがわかった。

図 10 800°C運転時の T 字型流路付平板セルの表面温度分布. 供給ガス: Ny:150ml/min、Hy:50ml/min.

図 11 800°C運転時の T 字型流路付平板セルにおいて、供給ガスを CH₄-60cm³/min、CO₂-40cm³/minの模擬バイオガスに切り替え、 Air/Biogas 比を変化させたときのセル温度分布.

図12 流路付セルの温度分布の例

3.3 SOFC 単セルの電流電圧特性評価

図13、14に、流路無しの平板セル及びT字流路付平板 セルに、空気添加模擬バイオガスを直接供給したときの 800℃における電流電圧特性を示す。いずれのセルにお いても、空気添加量が増加し Air/Biogass 比が大きくなる ほど電圧が低下する傾向にあった。流路付セルと流路無 し平板セルを比較すると、流路付セルでは温度分布がよ り平準化したことで化学エネルギーの低下が抑制され、 高い開回路電圧が得られた。しかしながら、発電状態に おいては、流路付セルの方が電流値の上昇に伴う電圧の 低下が大きくなっている。これは、流路付セルでは集電体 との接触面積が小さく、集電性能が低下したためと考えら れる。

4. まとめ

押出成形で作製した NiO-YSZ アノードシートに活性層 及び YSZ 電解質層をスクリーン印刷で積層し、緻密な電 解質膜を有するハーフセルを作製した。成形後の生シー トに小型彫刻機でガス流路を形成させたハーフセルを試 作し温度分布の評価を行ったところ、温度分布が緩和さ れる傾向が確認された。セルの電流電圧特性では、流路 付セルの方が温度分布の均質化により高い開回路電圧 が得られたが、発電時の電圧低下は大きくなった。流路を 設けることで集電性能が低下したためと考えられ、集電方 法の工夫が必要である。

今後はさらにセルの温度勾配を緩和できる最適なセル 構造を開発するとともに、集電方法を検討し、セルのスタ ック化を視野に入れたシステムの開発を目指す予定であ る。

参考文献

- 古田祥知子、佐賀県窯業技術センター平成23年度研 究報告書, 5-9 (2012).
- Y. Takahashi, Y. Shiratori, S. Furuta, K. Sasaki, SSI-18 poster abstracts, 154 (2011).

図 13 800°C運転時の流路なし平板セルの電流電圧特性. 模擬バイオガス組成:CH₄-60cm³/min、CO₂-40cm³/min.

図 14 800°C運転時の T 字型流路付平板セルの電流電圧特性. 模擬バイオガス組成: CH₄-60cm³/min、CO₂-40cm³/min.