吉田秀治・寺崎 信

I H調理器対応型陶磁器製調理器具用素地をコーディエライト質素地とペタライト質素 地により調製を試みた。その結果、コーディエライト質では、温度差 350℃の熱衝撃試験に 耐える素地を調製することができなかった。しかし、ペタライト質素地は、最高で温度差 550℃の熱衝撃試験に耐えるものを開発することができた。また、温度差 350℃の熱衝撃試 験に耐えるペタライト質素地用の釉薬も開発することができた。

一方、市販の銀製発熱膜の耐貫入試験、食器洗浄抵抗性、熱衝撃試験および発熱試験など の物性評価を行った結果、実用可能であることが明らかとなった。

1.はじめに

近年の生活様式の変化の中で家庭用電気 器具の進歩が著しく、それに対する周辺物 品の対応が求められている。特に最近では、 IH調理器が業務用ならびに一般家庭にお いて普及しつつあり、近い将来、IH調理 器は火を使わない安全な調理器具として、 急速に普及していくであろうと予測されて いる。しかし、IH調理器に対応した陶磁 器製の調理器具の開発・普及はほとんど進 んでおらず、将来的にIH調理器の普及に 伴い大きな市場となる可能性がある。した がって、本研究では、IH調理器に対応し た陶磁器製の調理器具の開発を行った。

2. 実験方法

2.1 試料素地用陶土の調製

試料素地用陶土は、あらかじめ粉砕して 粒度調整した原料を用い表1および表2に 示した配合組成となるように調製した。 2.2試料釉薬の調製

試料釉薬は、あらかじめ粉砕して粒度調 整した原料を用い、表3に示した配合組成 となるように調製した。

表1 コー・	ディエライ	化質素均	^れ の	配合	組成	
原:						
マレーシアナ	28		28			
本山蛙目	15		15			
<u>- 日本日</u> 合成コーディ	エライト	40			20	
アルミナ	• • •	3		23		
益田長石		14			14	
tota	al	1	00	100		
<u>ま</u> 2 ペタ	ライト質	ままう	ふう	S組F	<u></u>	
原	<u>ノ II 및</u> 料			PGA		
ペタライ	~	60			<u>- un</u> 55	
		40			35	
アルミナ		40			10	
total		1	100		100	
		2		2	1	
ペタライト	75	80		, 80	75	
本山蛙目粘土	5	5		5	, s 5	
AI(OH) ₃	5	0		0	10	
ZnO	10	10		5	5	
$CaCO_3$	5	5		5	5	
益田長石	0	0		5	0	
Total	100	100		100	100	
	5	6		7	8	
ペタライト	70	70		70	65	
本山蛙目粘土	5	5		5	5	
AI(OH) ₃	10	10		7	15	
ZnO	10	15		15	15	
CaCO ₃	5	0		3	0	
益田長石	0	0		0	0	
Total	100	100		100	100	

2.3 I H調理器用発熱膜試料の調製

I H調理器用発熱膜には外径 140 φ (mm) の銀を主成分とした転写紙(鳴海製陶(株) 社製)を使用した。これを外径 8 インチ φ の洋皿に貼付し、電気炉により 750℃~ 900℃で焼成して発熱試験用の試料とした。 また、転写紙を 1/8 に切断し 50 (mm)角の 磁器板に貼付し、電気炉により 750℃~ 900℃で焼成して耐貫入試験および食器洗 浄抵抗性などの物性評価用の試料とした。 2.4 焼成

試験素地及び施釉試験体の焼成は、電気 炉により大気中で昇温速度 100℃/h.で所 定の温度まで昇温後1時間均熱し、自然放 冷して行った。

2.5 焼成体の吸水率及び嵩密度の測定

焼成体の吸水率及び嵩密度は、ASTM C 373-88の方法で行った。

2.6 熱膨張の測定

熱膨張は、焼成後の素地及び熔融させた 釉薬のボタンから試料寸法約 5×5×20

(mm) に切り出した試験体を用い、(株)マ ックサイエンス社製熱機械測定装置によ り昇温速度 10℃/min.、荷重 10g およびサ ンプリングタイム 3.0sec.の条件で行った。 2.7 結晶相の同定

結晶相の同定は、粉末 X 線回折法により (株)マックサイエンス社製 X 線回折装置で 行った。

2.8 熱衝撃試験

熱衝撃用の試料片は、2.1 で調製した陶 土を鋳込み成形により20×120×7(mm)の 板状に成形し、所定の温度で本焼して作製 した。熱衝撃試験は、陶磁器製耐熱食器の JIS S 2400の方法で行った。熱衝撃抵抗性 の評価は、温度差 350℃で熱衝撃試験を行った後の試料を十分に乾燥させ、赤色染料 溶液に試料片を浸し目視確認を行って評 価した。さらに、目視確認で異常が認めら れなかった試料素地は、再度試料片を作成 して陶磁器製耐熱食器の JIS S 2400 の方 法で所定の温度差の熱衝撃を加え、試料を 十分に乾燥させた後(株)島津製作所社製 オートグラフによりスパン 6cm、クロスへ ッドスピード0.5mm/min.の条件で3点曲げ 強度を測定して強度が急激に減少する前 の温度を耐熱温度として評価した。

2.9 I H調理器用発熱膜の耐貫入性試験

耐貫入性試験は、(株)栗原製作所社製の オートクレーブにより180℃、12気圧で所 定の回数繰り返し試験を行い、試験毎に発 熱膜表面の変化を日本電色工業(株)社製 の光沢度計で測定して評価した。

2.10 I H調理器用発熱膜の食器洗浄抵抗 性試験

食器洗浄抵抗性試験は、ホシザキ電機 (株)社製の業務用食器洗浄機により洗浄 を600回~1000回の範囲で行い発熱膜表面 の変化を光沢度計で測定して評価した。

2.11 I H調理器による発熱膜の発熱試験

発熱膜の発熱試験は、200V 仕様の(株) 日立製作所社製 I H調理器を用い、表面温 度を日本電子(株)社製のサーモビュワで 測定して評価した。

- 3. 結果および考察
- 3.1 コーディエライト質素地
- 3.1.1 焼結性

表4及び表5にコーディエライト質C素 地及びコーディエライト質A素地の各焼成 温度における焼成体の物性を示した。吸水 率及び嵩密度の値から、C素地及びA素地 は、焼成温度が1250℃までは吸水性が残存 し、1,300℃以上ではほとんど吸水性がな くなる事が明らかとなった。また、両素地 とも嵩密度は、1,300℃まで急激に増加す るが1,300℃と1,350℃焼成では大きな差 は見られなかった。このことから、C素地 及びA素地は、1300℃で焼成すると緻密化 することが明らかとなった。

3.1.2 熱的性質

表4及び表5にコーディエライト質C素 地及びコーディエライト質A素地の各焼成 温度における焼成体の熱膨張係数を示し た。これらの表から、C素地の熱膨張係数 は、 $3.1 \times 10^{6} \sim 3.4 \times 10^{-6}$ の値を示すこと が明らかとなった。一方、A素地の熱膨張 係数は、 $4.3 \times 10^{-6} \sim 4.6 \times 10^{-6}$ の値を示す ことが明らかとなった。A素地の熱膨張係 数がC素地の熱膨張係数より大きな値を示 したのは、大きな熱膨張を示すアルミナを C素地よりA素地のほうに20%多く配合し たためと考えられる。

3.1.3 熱衝擊抵抗性

表4及び表5にコーディエライト質C素 地及びコーディエライト質A素地の各焼成 温度における焼成体の熱衝撃試験の結果 を示した。これらの結果から、C素地及び A素地の焼成体は、いずれも1200℃焼成の 1 個の試験片を除きすべての試験片が破損 した。このことから、C素地及びA素地の 焼成体は、温度差350℃の熱衝撃に耐えな いことが明らかとなった。これは、両素地 の焼成体の熱膨張係数が温度差350℃の熱 衝撃に対し大きすぎたためと考えられる。

表4 C素地の各焼成温度における物性					
焼成温度 (℃)	吸水率 (%)	嵩密度 (g/cm ³)	熱膨張係数 (1/℃)*	熱衝撃試験 ΔT=350℃	
1200	9.18	2.04	3.35×10^{-6}	3個中2個破損	
1250	3.96	2.26	3.26×10^{-6}	3個中3個破損	
1300	0.04	2.49	3.16×10^{-6}	3個中3個破損	
1350	0.06	2.54	3.26×10^{-6}	3個中3個破損	
*:熱膨張係数は、30℃~700℃の平均線熱膨張係数である。					
表5 A素地の各焼成温度における物性					
焼成温度 (℃)	吸水率 (%)	嵩密度 (g/cm ³)	熱膨張係数 (1/℃)*	熱衝撃試験 ∆T=350℃	
1200	6.26	2.31	4.59×10^{-6}	3個中2個破損	
1250	1.78	2.49	4.60×10^{-6}	3個中3個破損	
1300	0.05	2.65	4.46×10^{-6}	3個中3個破損	
1350	0.06	2.66	4.37×10^{-6}	3個中3個破損	

3.2ペタライト質素地

3.2.1 焼結性

表 6 及び表 7 にペタライト質 P664 素地 及びペタライト質 PGA 素地の各焼成温度に おける焼成体の物性を示した。吸水率及び 嵩密度の値から、P664 素地及びPGA 素地は、 焼成温度が 1250℃までは吸水性が残存し、 1,300℃以上ではほとんど吸水性がなくな る事が明らかとなった。このことから、 P664 素地及び PGA 素地は、1300℃で焼成す ると緻密化することが明らかとなった。 3.2.2 熱的性質

表 6 及び表 7 にペタライト質 P6G4 素地 及びペタライト質 PGA 素地の各焼成温度に おける焼成体の熱膨張係数を示した。これ らの表から、P6G4 素地の熱膨張係数は、0.5 ×10⁻⁶~1.25×10⁻⁶の値を示すことが明ら かとなった。一方、PGA 素地の熱膨張係数 は、1.6×10⁻⁶~2.0×10⁻⁶の値を示すこと が明らかとなった。PGA 素地の熱膨張係数 が P6G4 素地の熱膨張係数より大きな値を 示したのは、P6G4素地に配合しなかったア ルミナをより PGA素地に10%配合したため と考えられる。

3.2.3 熱衝撃抵抗性

表 6 及び表 7 にペタライト質 P6G4 素地 及びペタライト質 PGA 素地の各焼成温度に おける熱衝撃試験の結果を示した。P6G4素 地において 1200℃及び 1250℃焼成体は、 温度差 350℃の熱衝撃試験に対し破損など の異常は認められなかった。しかし、 1300℃で焼成した焼成体は、温度差 350℃ の熱衝撃試験に対しすべての焼成体が破 損した。一方、PGA 素地において 1200℃、 1250℃及び1300℃で焼成した焼成体は、温 度差 350℃の熱衝撃試験に対し全て破損な どの異常は認められなかった。さらに、 1250℃及び 1300℃で焼成した焼成体の各 温度差の熱衝撃試験後の強度変化を図1及 び図2に示した。これらの図から、1250℃ で焼成した焼成体は、温度差が 550℃まで 大きな強度の減少がなかった。また、 1300℃で焼成した焼成体は、温度差が 450℃まで大きな強度の減少がなかった。 この結果から、1250℃で焼成した焼成体の ほうが 1300℃で焼成した焼成体よりも熱 衝撃抵抗性が大きいことが明らかとなっ た。

表6 P6G4素地の各焼成温度における物性					
焼成温度 (℃)	吸水率 (%)	嵩密度 (g/cm³)	熱膨張係数 (1/℃)*	熱衝撃試験 ∆T=350℃	
1200	14.35	1.80	0.52×10^{-6}	破損無	
1250	9.44	1.92	1.25×10^{-6}	破損無	
1300	0.09	2.28	1.22×10^{-6}	3個中3個破損	
*:熱膨張係数は、30℃~700℃の平均線熱膨張係数である。					

表7 PGA素地の各焼成温度における物性				
焼成温度 (℃)	吸水率 (%)	嵩密度 (g/cm³)	熱膨張係数 (1/℃)*	熱衝撃試験 ∆T=350℃
1200	12.96	1.90	1.60×10^{-6}	破損無
1250	8.15	2.02	1.75×10^{-6}	破損無
1300	0.11	2.32	2.00×10^{-6}	破損無
★,執膨脹逐漸は、20℃~700℃の変換結整態であるよう				

3.2.4 熱的性質

図3に熱衝撃抵抗性の結果がもっとも良 好であったペタライト質PGA素地を1250℃ で焼成した焼成体の熱膨張曲線を示した。 この図から、この焼成体の熱膨張曲線は、 異常な膨張を示さず滑らかな曲線を示す ことが明らかとなった。また、熱膨張係数 は、1.75×10⁻⁶(1/ \mathbb{C})と小さな値を示した。

3.2.5 焼成体の結晶相

図4に熱衝撃抵抗性の結果がもっとも良 好であったペタライト質PGA素地を1250℃ で焼成した焼成体のX線回折パターンを示 した。この図から、この焼成体に存在する 結晶は、 β -spodumene、mullite、corundum、 及び α -quartz であった。このことより、 ペタライト質PGA素地を1250℃で焼成した 焼成体には、異常膨張を示す結晶は存在し ないことが明らかとなった。

3.3 釉薬

作製した釉薬の熔融状態及び熱膨張係 数の値を表8に示した。この結果から、2、 5及び7の釉薬で良好な結果が得られた。 また、これらの良好な結果が得られた釉薬 の熱膨張曲線を図5、図6及び図7に示し た。これらの結果から、2、5及び7の釉薬 は、600℃以下の温度領域において異常膨 張は認められなかった。

3.4 施釉品の熱衝撃抵抗性

ペタライト質 PGA 素地に釉薬5 を施釉し、 1250℃で焼成したもの5 個について温度差 350℃の熱衝撃試験を行った結果、全ての 試験体において釉薬のひび割れや素地の 割れなどの破損は認められなかった。この ことより、ペタライト質 PGA 素地に釉薬5 を施釉し、1250℃で焼成したものは、温度 差 350℃の熱衝撃に耐えることが明らかと なった。

3.5IH 発熱膜の物性評価

3.5.1IH 発熱膜の洗浄抵抗性

IH 発熱膜を焼き付けた試料の洗浄試験 の結果、750~900℃で焼き付けた試料は、 いずれの温度でも600回の繰り返し洗浄で 表面光沢が低下せず、優れた耐久性を有し ていた。また、熱膨張係数が異なる4種類 の釉薬の影響を検討したが、石灰釉(6.3 ×10⁻⁶)、タルク釉(5.8×10⁻⁶)、エコ釉(5.2 ×10⁻⁶)、今回開発した釉薬5(1.5×10⁻⁶) といずれも剥離や光沢低下は認められず 良好であった。図8に開発した施釉素地焼 成体に IH 発熱膜を焼き付けた試料の洗浄 試験の結果を示した。この図から、洗浄を 1000 回の繰り返しても発熱膜の表面光沢 に変化はなく、洗浄抵抗性に問題がないこ とがわかった。

3.5.2 IH 発熱膜の耐貫入性

IH 発熱膜を焼き付けた試料の耐貫入性 試験の結果を図9に示した。石灰釉、タル ク釉、エコ釉自体の光沢は低下しなかった が、IH 発熱膜の光沢は徐々に低下した。し かし、釉薬5に IH 発熱膜を焼き付けたも のは、耐貫入性試験を3回繰り返しても剥 離や表面光沢の低下は認められなかった。

3.5.3 IH 発熱膜の加熱特性

IH 対応のステンレス鍋と 1250℃で焼成 した 8 インチ o の洋皿に IH 発熱膜を焼き 付けた試験体で200m1の水を90℃まで沸か す試験を行った結果を表9に示した。ステ ンレス鍋は、ガス加熱では 127sec かっか たが、III 加熱では 70sec と短時間で水を沸 かすことができた。また、IH 調理器と鍋の 底面の距離が 5mm あっても加熱性能はほと んど落ちなかった。1250℃で焼成した開発 洋皿はステンレス鍋より加熱速度は劣る が、ガス加熱に比べ IH 加熱は加熱時間が 短く、III対応のステンレス鍋と同様な加熱 特性を示すことがわかった。また、IH調理 器と発熱膜の距離が 3mm と 5mm ではほとん ど差がないが、10mm になると 220sec かか り、加熱特性が急激に低下することがわか った。一方、1300℃で焼成した洋皿は 108sec と加熱性能が向上していた。これは 高温焼成により素地の焼締まりがすすみ、 熱伝導率が高くなったためと考えられる。

表9 IH調理器による水の煮沸試験

調理器具	底面の高さ (mm)	熱源	所要時間 (sec)
	0	ガス	127
ステンレス鍋	0	IH	70
	5	11	72
	5	ガス	190
9インチギ 皿(1250)	5	IH	151
0イン)/+皿(1250)	10	11	220
	3	11	141
8インチ洋皿(1300)	5	"	108

図10は1250℃で焼成した開発皿にIH発 熱膜を焼き付けた試験体で200mlの水を 90℃まで沸かした直後の温度分布をサー モグラフィーによる熱画像で示したもの である。IH 発熱膜の部分が特に赤く、110 ~140℃程度まで昇温していたことがわか った。IH 発熱体が焼き付けられていない中 心部分で 76℃、リムの部分では 33℃とな っており、試験体が大きな温度分布を持つ ことがわかった。

図10 IH調理器により加熱した8インチ洋皿の熱画像

- 4.まとめ
- (1) コーディエライト質では、温度差 350℃
 の熱衝撃試験に耐える素地を調製する
 ことができなかった。
- (2)ペタライト質素地は、最高で温度差
 550℃の熱衝撃試験に耐えるものを開
 発することができた。
- (3) 温度差 350℃の熱衝撃試験に耐えるペ タライト質素地用の釉薬も開発するこ とができた。
- (4)市販されている IH 発熱膜の耐貫入性試 験および洗浄抵抗性試験は、サイクル試 験においても問題なく使用できること が確認できた。
- (5)200VのIH調理器で煮沸試験を行った結 果、IH 調理器の方がガス加熱より短時 間で水が沸騰することが確認できた。
- (6)開発したペタライト質素地、釉薬およ び市販のIH発熱膜により、IH調理器対 応型陶磁器製調理器具の開発に目途が 立った。